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Particular solutions of the problem about to be considered have been obtained 
for specific external force fields by Johann Bernoulli (the shape of a sail 
in a wind), Popov [l], Krylov [2] and Kochin [ 33. 

The problem in general form has been solved on'y for the case of a planar 
force field (Minakov [4]). Minakov obtained his solution by assuming that 
the components of the external force were given along the tangent and normal 
to the string, and by applying the natural equations of equilibtium. 

What follows is a general solution of the problem in Cartesian coordinates 
with the string situated in a plane and in a three-dimensional space. 

1. Let the external force p' per unit string length be a function of 
the orientation of the string in space, 
string dx/ds , dr//as t d/&s 

i.e. of the direction cosines of the 
and let it be given in terms of its pro:ec- 

tions F,, F,, F, on the Cartesian coordinate axes. 

The equilibrium equations for a flexible inextensible homogeneous string 
in this case take the form 

where a is the length of the string, 
(x 

T is the tension in the string,and 
, y, z) is the symbol for the cyclic permutation. 

Let us multiply out the derivatives on the left-hand sides of the first 
three equations of the system, 
&?/as , 

and add to the third equation, multiplied by 

tively. 
the first two equations multiplied by d~/ds and dy/ds, respec- 
Taking Into account the fourth equation of the system and the rela- 

tion obtained by differentiating the fourth equation with respect to s ,we 
reduce tne equilibrium equations to the form 
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Without 8l'I.y SignifiC8nt loss of generality, we may assume that the string 
nowhere forms a right le with one of the coordinate axes, e.g. the x-axis, 
This guarantees that dx da # 0 . 7 

We now Introduce the new variable% 1~ and u so that, taking into 
account the fourth equation in system (l,l), we hke 

dz dy -_=u. dS t -&==“% $+$f~_~L~Q~ W.f 

This substitution of variables allows us to express the projections of 
the external force on the coordinate axes 8s functions of u and n l The 
first three equations Of system (1.Y.) become 

-$4+Tg 3-P,& VI=0 (f.3) 

$v+T 
( 

dv 
gv+uz + 1 

P&k, Y) = 0 (W 

dT 
ds=- 

uFX (a, v) - uvFy (u, u) - i/ 1- uQ - AQFz (TV, vf (m 

Multiplying Equation (1.3) by v and subtracting the result from Equation 
(3.4) we obtain 

du 
ITds- Y fLF, (u, VI - + Fg (UP @I (1.6) 

On the other hand+ from Equation (1.3), recalling (1.51, we find that 

du 
T rr’s = (22 - i) F, (u, v) + uQi$ (u, v) + lil Ir/ 1- u= - aa4 FE I’-+, ~1 (1.7) 

We divide Equation (1.6) by (1.74. This gives us an ordinary first-order 
i55fferential equation solved for the first derivative that relates the Vari- 
able% u and u 

dv vF, (u, ~1 - FV fu, ~1 

du = u(uI - 1) FX (u, v) + uavFv (u, u) + u8 f 1 - ua - umv'Fz (u, d 

mce the function V(U) has been determined by approximate integration 
of' the above equ&tLon, find5ng the five funct5on% x&f, y(u), t(u), e(ufr 
r(m) t-t constitute the complete parametric solution of the problem becomes 
a matter of quadrRtUre%. Indeed, dividing EqWtion (1.5) by 11.71, we obtain 
an equation with separable vRriRble%, whose integration yields the following 
expression for the tension In the string: 

TW----GeXP (%_ 
s 

?.kF*(i&, v) + uz#&, c) f 1/1 -us- tbZvQlj;@* Yl d’rs 

us) F, (rr, v) - 3v FV (a, v) - u y- 1 - uQ - uQ,Qfi; fu, v) 

Next, integrating Equation (1.71, we have 
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Finally, by Integrating Equations (1.2) we obtain the present coordinates 
of the string as functions of u : 

x(u) = 
s 

udr(u) + c,, Y(U) = 1 uvds (u) + C, 

r(u)= vi- 
s 

13 - uav' ds (u) + C, 

The constants C,, C,, C,, C,, C, 
tlal conditions. 

can be determined from the given lnl- 

2. When the string Is situated In a plane, the equilibrium equations for 
a flexible, lnextenslble, homogeneous string become 

&(Tg)+F& $)=o, $(T$)+F&$)=o 
($)“+ ($)‘= i (2.1) 

We will attempt to find the tension and equilibrium shape of the string 
In parametric form, I.e. In the form of four functions of the direction 
cosine ax/d8 : 

2, Y, 8, T I (dzlds) 

We introduce the appropriate notation. 
equatlon of (2.1), we have 

Taking Into account the third 

dx 
-=u 
da ’ (2.2) 

This substitution allows us to express 
single variable u . 

Fx and F, as functions of the 

We multiply out the derivatives on the left-hand sides of the equilibrium 
equations and add the first equation multiplied by ax/de 
equation multiplied by dv/da . 

to the second 

(2.1) and the relation 
Recalling the third equation of system 

we obtain 

We note t.lat 

dx da, dy d=y -- ----_* 
ds ds’ + ds dsa 

dT 
ds=- 

uFx (u) - 1/ 1 - u”Fy (u) (2.3) 

dax dy rPy dx ----- 
d9 ds ds2 ds 

Next, we multiply the Second equation of system (2.1) by ax/da and 
SUbtraCt from it the first equation Of the System multlplled by dV/ds 
Taking into account the latter expression as well, we obtain 

v&a $ = uFv (u) - l/l - u’F, (u) 

We divide Equation (2.3) by (2.4) 

vi- ua dT uFx (k) + 1/ 1 - u”Fg (u) 

T du= - J’-I - u’Fx (u) - uF,, (u) 

Integration of this expression gives us the tension in the string 

(2.4) 

T(u) = cloexp s uF, (4 + l/l - “‘Fy (4 

(1 - usI Fx (u) - u 1/i - UaFJu) d” 
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We now integrate Equation (2.4) to find 

s(u)= ‘= s T(u) du 

u1/1-uZ~~(u)+(ua-1)F,(u) 
+ Ca” 

Let us now find the present ooordinates of the strl as functions of the 
direction cosine. We proceed by integrating Equations 
of the latter expression. 

n? 2.2) 
This gives us 

and making use 

z(u) = - s UT(U) du 

u-r/~- uaFv(u)+(ua-i)Fx(u) 
+ ca” 

Y(u) = s T(u) du 
+ C4O 

q/(u)--1 - uW,(u) - 

The constants cIo, C,o, C,o, c,o, may be determined from the inltFa1 
conditions. 

Thus, the tension and equilibrium shape of the string are found in quad- 
ratures. 

3. Let us consider the case where the string is acted upon by a homoge- 
neous force field (e.g. a gravitational field) in addition to the external 
forces that depend on the orientation of the string. 

In constructing the equilibrium equations for the flexible string, we 
choose a coordinate system such that the direction of one of its axes, e.g. 
the y-axis, coincides with the direction of the homogeneous field vector. 
Now, In order to extend the solutions of Sections 1 and 2 to the case in 
hand, it is sufficient to replace F by F,+ 4 In the final formulas of 
these solutions (g = const Is the absolute value of the homogeneous field 
force per unit string length). 
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